Abstract
Semaphorins are an important class of signalling molecules involved in axon guidance, immune function and angiogenesis. They are characterized by having an extracellular sema domain of about 500 residues. The steps involved in the determination of the structure of human semaphorin 4D are described here as a case study of selenium MAD phasing in a difficult case with low symmetry, moderate diffraction and low selenium content. A particular feature of this study was the large number of diffraction images required to give data of sufficient quality for structure determination and these data are re-analyzed here to investigate the effects of radiation damage on eventual data quality and to suggest strategies for successful MAD phasing in similar difficult cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section D Biological Crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.