Abstract

Well-defined multifunctionalized dextran esters bearing photo-crosslinkable and chiral groups as well as small alkyl moieties for the adjustment of the solubility were prepared from two dextran samples with different origin and molecular weight. The examination of side structures of the starting dextran was carried out by different one- and two-dimensional NMR techniques. The main synthesis path via in situ activation of furan-2-carboxylic- and pyroglutamic acid with CDI under mild conditions gives highly functionalized dextran derivatives possessing a degree of polymerization in the range of the starting polysaccharide. The subsequent reaction with propionic anhydride leads to completely substituted, CHCl(3) soluble derivatives useful for the determination of the particular degree of substitution. By variation of the molar ratios of polymer to reagent with photo-crosslinkable- and chiral moieties during the reaction and even by subsequent peracylation, multifunctional dextran derivatives with adjustable properties like the hydrophilic/hydrophobic balance were obtained that may form biocompatible spherical nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.