Abstract

Improving the energy efficiency of electrocatalytic reduction of CO2 requires tuning of redox properties of electrocatalysts to match redox potentials of the substrate. Recently, we introduced nanographenes as ligands for metal complexes for such purposes by taking advantage of size-dependent properties of the conjugated systems. Here, we use computations to investigate the structure dependence of the electrocatalysis at Re(diimine)(CO)3Cl complexes with nanographene ligands that contain a polycyclic aromatic hydrocarbon moiety through a pyrazinyl linkage. We show that the reduction potentials of the complexes depend not only on conjugation size but also on shape and geometry of the ligands, revealing another parameter in tuning the redox properties of the electrocatalysts. In addition, our work reveals a compromise between reduction potentials and activation of this class of electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.