Abstract

A method to modify a montmorillonite (MMT) clay mineral (CM) surface by surfactant (SA) cations with simultaneous doping by multiwall carbon nanotubes (MWNT) has been proposed. The structure and spectroscopic properties of composites based on MMT from two deposits (Cherkassy and Pyzhevsk, Ukraine) that differ in the inorganic impurity contents and cation-exchange capacities (CEC) have been investigated. Cetyltrimethylammonium bromide (CTAB) was used as the SA. According to x-ray diffraction analysis, CTA + cations intercalated into MMT interplanar spaces expand them significantly whereas MWNTs do not affect the MMT galleries due to the much larger sizes of the former. Studies of the composite materials by IR spectroscopy revealed the mutual influence of the components appearing as the ordering of near-surface layers in the aluminosilicate framework and a change in the modifier methylene chain conformation at the interphase boundary. The majority of CTAB (~90%) is shown to be located inside the MMT galleries, the packing arrangement of which depends on the CEC value and affects the interplanar distances in MMT. The alkyl chains of the CTA + cations on the outer surface of the MMT plates are sorbed by nanotubes, thus providing contact between the organoclay and MWNT surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.