Abstract

Structure and properties of a series of binary Ti-Mo alloys with molybdenum contents ranging from 6 to 20 wt% have been investigated. Experimental results indicated that crystal structure and morphology of the cast alloys were sensitive to their molybdenum contents. The hexagonal alpha' phase c.p. Ti exhibited a feather-like morphology. When Mo content was 6 wt%, a fine, acicular martensitic structure of orthorhombic alpha" phase was observed. When Mo content was 7.5 wt%, the entire alloy was dominated by the martensitic alpha" structure. When Mo content was increased to 10 wt% or higher, the retained beta phase became the only dominant phase. Among all Ti-Mo alloys, the alpha" phase Ti-7.5Mo alloy had the lowest hardness. The bending strength of Ti-7.5Mo was similar to that of Ti-15Mo and Ti-13Nb-13Zr, and higher than c.p. Ti by nearly 60%. The bending modulus of the alpha"-dominated Ti-7.5Mo alloy was lower than that of Ti-15Mo by 22%, of Ti-6A1-4V by 47%, of Ti-13Nb-13Zr by 17%, and of c.p. Ti by 40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.