Abstract

Abstract Bi-doped CaO–Al2O3–SiO2 glass microspheres with Ca2Al2SiO7 (gehlenite) composition were prepared by combination of solid-state reaction and flame synthesis. The concentration of Bi was 0.0, 0.5, 1 and 3 mol%. The chemical composition of prepared glass microspheres was determined by X-ray fluorescence (XRF). The structural and magnetic properties of prepared glass microspheres and their polycrystalline analogues were studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman spectroscopy and SQUID magnetometry. The closer inspection of glass microspheres surface by SEM confirmed smooth surface and revealed no features indicating presence of crystalline phases. All Bi-doped microspheres are X-ray amorphous, however in case of undoped microspheres XRD detected traces of crystalline gehlenite. XRD analysis of samples crystallized at 1273 K for 10 h revealed the presence of gehlenite as the main crystalline phase. The presence of gehlenite in crystallized samples were also confirmed by Raman spectroscopy. All samples (glass microspheres and their crystalline analogues) showed diamagnetic or weak ferromagnetic behavior at room temperature, whereas paramagnetic or weak ferromagnetic behavior was observed at 2 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.