Abstract

The kinetic properties of the hydrolyses of 8-Br ATP and 8-SCH3 ATP by myosin [EC 3.6.1.3] and actomyosin were compared with those of ATP, and the following results were obtained. The Ca-NTPase activities of myosin using these two ATP analogs as substrates were smaller than that of ATPase, and the NTPase activities toward these analogs were strongly suppressed by EDTA. The Mg-NTPase activities toward these analogs were higher in a medium of high ionic strength than in a medium of low ionic strength, in contrast to the activity of Mg-ATPase. These analogs did not produce any initial burst of Pi liberation, activation of myosin NTPase by F-actin, or superprecipitation of actomyosin. The interactions between 8-Br ATP and HMM, acto-HMM, actomyosin, and myofibrils were studied in detail in the presence of Mg2+ in medium of low ionic strength. The Michaelis constant, Km, and the maximum rate, Vm, of 8-Br ATPase of HMM were 27 muM and 21 min-1, respectively. The fluorescence change of HMM induced by 8-Br ATP also followed the Michaelis-Menten equation, and the Michaelis constant, Kf1, was as low as 4 muM. Acto-HMM and acto-S-1 were fully dissociated by the addition of 8-Br ATP. The relation between the extent of dissociation of acto-HMM and the concentration of 8-Br ATP followed the Michaelis-Menten equation, and the apparent dissociation constant, Kd, was 22 muM. This Kd value is almost equal to the Km value of 8-Br ATPase of HMM described above. Myofibrillar contraction was not supported by 8-Br ATP. It was concluded that in the myosin NTPase reaction with 8-Br ATP as a substrate, M2NTP but not MNDPP is formed in route (1), while MNTP is formed in route (2). It was also concluded that the key intermediate for the actomyosin NTPase reaction is MNDPP, and that dissociation of acto-HMM is induced by the formation of M2NTP and MNTP in routes (1) and (2), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.