Abstract

An amorphous material based on lead iron niobate (PFN) is studied by X-ray diffraction and dielectric and Mossbauer measurements over a wide temperature range. The atomic structure of amorphous PFN is found to be substantially disordered, which suppresses the transitions into ordered states in the electric and magnetic dipole subsystems that are inherent in crystalline PFN. The dependence of electrical conductivity σ on field frequency ω is shown to correspond to the law σ ∼ ω s , where parameter s decreases linearly with increasing temperature. This law corresponds to a hopping carrier transfer mechanism that is correlated due to the Coulomb interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.