Abstract

Silver zinc phosphate glasses with a composition (40−x/2) P2O5 – (40−x/2) Na2O–20ZnO–x AgNO3 (x=5, 10 and 15mol%) were prepared of the glasses via conventional melt-quenching technique. From the Raman spectrum, the structure of the glasses was analyzed. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10Hz to 13MHz and a temperature range from 323K to 623K. The dependence of electrical data on frequency was analyzed in the framework of the Nyquist's plot and Jonscher’s power law. The semicircles observed in the plots indicate a double relaxation process. The studied materials exhibit a significant contribution of bulk and interfacial effect to electrical conduction and to non-Debye relaxation process. The dc conductivity (σdc) follows Arrhenius behavior with temperature. The ac and dc conductivities of the samples were found to increase with the increase in temperature. The conductivity variation for P2O5-Na2O-ZnO glasses doped with various concentrations of AgNO3 was explained by the presence of ionic contribution.The dielectric characterizations include measurements involving the variation of the dielectric constant as well as the dielectric loss with frequency. The dielectric studies show low values for the dielectric constant and loss at high frequencies. Dependence of the electrical modulus of the glasses on frequency and temperature presented a relaxation phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.