Abstract

The concentration of macromolecules inside the cell is high with respect to conventional in vitro experiments or simulations. In an effort to characterize the effects of crowding on the thermodynamics and kinetics of disordered peptides, molecular dynamics simulations were run at different concentrations by varying the number of identical weakly interacting peptides inside the simulation box. We found that the presence of crowding does not influence very much the overall thermodynamics. On the other hand, peptide conformational dynamics was found to be strongly affected, resulting in a dramatic slowing down at larger concentrations. The observation of long lived water bridges between peptides at higher concentrations points to a nontrivial role of the solvent in the altered peptide kinetics. Our results reinforce the idea for an active role of water in molecular crowding, an effect that is expected to be relevant for problems influenced by large solvent exposure areas like in intrinsically disordered proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.