Abstract

Imidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)] (NAMI-A) and indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) are the most promising ruthenium complexes for anticancer chemotherapy. In this study, the azole ligand of NAMI-A was systematically varied (from imidazole of NAMI-A to indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole), and the respective complexes were evaluated with regard to the rate of aquation and protein binding, redox potentials, and cytotoxicity by means of capillary zone electrophoresis, electrospray ionization mass spectrometry, cyclic voltammetry, and colorimetric microculture assays. Stability studies demonstrated low stability of the complexes at pH 7.4 and 37 degrees C and a high reactivity toward proteins (binding rate constants in the ranges of 0.02-0.34 and 0.01-0.26 min-1 for albumin and transferrin, respectively). The redox potentials (between 0.25 and 0.35 V) were found to be biologically accessible for activation of the complexes in the tumor, and the indazole-containing compound shows the highest antiproliferative activity in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.