Abstract

Purification and characterization of plant cytochrome c oxidases have been impeded by the difficulty of obtaining enough plant mitochondria. We have found commercial wheat germ to be a rich and convenient source of mitochondrial membranes containing respiratory chain complexes in ratios and amounts similar to mitochondria prepared from etiolated seedlings. Cytochrome c oxidase was purified from these membranes by anion-exchange (MonoQ) fast protein liquid chromatography. The enzyme is highly active (turnover number up to 1000 s-1) and exhibits biphasic cytochrome c reaction kinetics similar to those of beef heart oxidase. As with other plant oxidases, the visible spectrum of wheat germ oxidase in the reduced form is blue-shifted compared to other eukaryotic cytochrome oxidases, with peaks at 441 and 602 nm. The electron paramagnetic resonance spectrum of CuA of the wheat germ enzyme is very similar to that of the maize and beef heart enzymes, suggesting that the copper environment is not altered. Sodium dodecyl sulfate-polyacrylamide gels show a subunit composition in which subunits I-IV resemble those of the yeast enzyme in size and antigenicity, while three to four smaller peptides are dissimilar to yeast and other eukaryotic oxidases. A difference between the subunit composition of the wheat germ and wheat seedling enzymes suggests the existence of a developmental or tissue-specific form of cytochrome oxidase in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.