Abstract

To date, comparing and visualizing genome sequences remain challenging due to the large genome size. Existing approaches take advantage of the stable property of oligonucleotides and exhibit the main characteristics of the whole genome, yet they commonly fail to show progression patterns of the genome adjustably. This paper presents a novel visual encoding technique, which not only supports the binning process (phylogenetic analysis), but also allows the sequential analysis of the genome. The key idea is to regard the combination of each k-nucleotide and its reverse complement as a visual word, and to represent a long genome sequence with a list of local statistical feature vectors derived from the local frequency of the visual words. Experimental results on a variety of examples demonstrate that the presented approach has the ability to quickly and intuitively visualize DNA sequences, and to help the user identify regions of differences among multiple datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.