Abstract

In this work, (E)-N1-(3-chlorobenzylidene)benzene-1,4-diamine (CBD) compound was synthesized with good yield. The spectral studies were recorded by FT-IR, FT-Raman, NMR and UV-Vis to determine structural parameters. The geometrical parameters were optimized using DFT calculations at 6-311++G(d,p) basis set. The calculated structural parameters of the molecule were in line with the experimental data. The molecular orbitals of the compound were investigated through highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) analysis. The hyper conjugative interaction energy E(2) along with donor, acceptor electron densities (EDs) were determined by natural bond orbital (NBO) analysis. The molecular electrostatic potential (MEP), mulliken atomic charges, non-linear optical (NLO) properties and potential energy surface (PES) scan were also calculated. The 1H and 13C NMR chemical shifts calculated using Gauge invariant atomic orbital (GIAO) method were compared with the experimental NMR chemical shifts. Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) were carried out to characterise the thermal behaviour and stability of CBD molecule. In addition, PreADMET tool was also used to estimate ADME and Toxicity of CBD compound. The compound screened against four pathogens two gram positive and two gram negative had shown good anti-bacterial behaviour. The molecular docking studies executed against anti-bacterial target topoisomerase DNA gyrase enzyme (2XCT) emphasized good binding behaviour over the standard drug. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.