Abstract
We report complete sequence-specific proton resonance assignments for the trypsin-solubilized microsomal ferrocytochrome b5 obtained from calf liver. In addition, sequence-specific resonance assignments for the main-chain amino acid protons (i.e., C alpha, C beta, and amide protons) are also reported for the porcine cytochrome b5. Assignment of the majority of the main-chain resonances was rapidly accomplished by automated procedures that used COSY and HOHAHA peak coordinates as input. Long side chain amino acid spin system identification was facilitated by long-range coherence-transfer experiments (HOHAHA). Problems with resonance overlap were resolved by examining differences between the two-dimensional 500-MHz NMR spectra of rabbit, pig, and calf proteins and by examining the temperature-dependent variation of amide proton resonances. Calculations of the aromatic ring-current shifts for protons that the X-ray crystal structure indicated were proximal to aromatic residues were found to be useful in corroborating assignments, especially those due to the large shifts induced by the heme. Assignment of NOESY cross peaks was greatly facilitated by a prediction of intensities using a complete relaxation matrix analysis based on the crystal structure. These results suggest that the single-crystal X-ray structure closely resembles that of the solution structure although there is evidence that the solution structure has a more dynamic character.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.