Abstract
A new technique, continuous recycled flow (CRF) spectroscopy, has been developed for observing intermediates of any thermally induced, reversible reaction with a half-life of 10 s or longer. The structure can be probed by any spectroscopic method which does not perturb the system. Prolonged signal acquisitions of 8 h for ribonuclease A are possible. CRF was used to investigate the structure of the slow-folding intermediates of chemically intact ribonuclease A (RNase A) during thermal unfolding/folding under acidic conditions. The following conclusions were reached on the basis of the proton nuclear magnetic resonance and far-ultraviolet circular dichroism spectra of a folding intermediate(s): (A) The conformation of the detected folding intermediate(s) is similar to that of the heat-denatured protein. There is only limited formation of new structures. (B) The N-terminal alpha-helix is partially stable under these conditions and is in rapid (less than 10 ms) equilibrium with the denatured conformation. (C) There are long-range interactions between the hydrophobic residues of the N-terminal alpha-helix and the rest of the protein. These interactions persist well above the melting point. (D) An aliphatic methyl group reports on the formation of a new structure(s) that lie(s) outside of the N-terminal region. (E) The structures detected in chemically modified, nonfolding forms of the RNase A are also present in the folding intermediate(s). There are, however, additional interactions that are unique to chemically intact RNase A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.