Abstract

Structural properties of 3d carbon clusters were calculated employing recently developed model potential energy functions for carbon. Primarily, spherical shell structures were included in the present investigation. Configurations corresponding to local energy minima were calculated for various shells of an icosahedron containing different number of C atoms. For C60, the two low-lying isomers, the buckminsterfullerene and truncated dodecahedron, were found to be almost isoenergetic. It was also found that fully relaxed structures of C90 and C120 have energies very comparable to that of C60. Furthermore, a systematic analysis carried out in this study for carbon clusters with varying dimensionalities, revealed an interesting relationship between the bond lengths and the distribution of bond angles. In all cases, shorter bond distances were found to be associated with larger bond angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.