Abstract

Motivated by the recently discovered high-Tc superconductor La3Ni2O7, we comprehensively study this system using density functional theory and random phase approximation calculations. At low pressures, the Amam phase is stable, containing the Y2− mode distortion from the Fmmm phase, while the Fmmm phase is unstable. Because of small differences in enthalpy and a considerable Y2− mode amplitude, the two phases may coexist in the range between 10.6 and 14 GPa, beyond which the Fmmm phase dominates. In addition, the magnetic stripe-type spin order with wavevector (π, 0) was stable at the intermediate region. Pairing is induced in the s±-wave channel due to partial nesting between the M = (π, π) centered pockets and portions of the Fermi surface centered at the X = (π, 0) and Y = (0, π) points. This resembles results for iron-based superconductors but has a fundamental difference with iron pnictides and selenides. Moreover, our present efforts also suggest La3Ni2O7 is qualitatively different from infinite-layer nickelates and cuprate superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.