Abstract
Traditional Kalman-type tracking filters are based on a kinematic motion model, which leads to the occurrence of dynamic errors, which significantly increase during target maneuvering. One of the solutions to this problem is to develop a model of motion dynamics with the ability to adapt its structure to external influences. It is shown that the use of a dynamic model of motion in the filter, which takes into account the inertia of the target and the forces acting on it, makes it possible to significantly increase the efficiency of the state assessment. Purpose is to development of an algorithm for assessing the position of a maneuvering object, effective in terms of accuracy criterion. The use of an adaptive motion model as part of the filter provides an increase in the estimation accuracy in comparison with the classical Kalman filter, which is confirmed by the performed numerical modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.