Abstract

Green, simple and high value-adding technology is crucial for realizing waste batteries recycling. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O (MZFO@ZMO) heterojunctions are prepared from waste Mn–Zn batteries via a green bioleaching and sample co-precipitation method. The as-prepared catalysts with different Zn0.9Mn0.1O weight percentage (25%, 50% and 75%) have been comprehensively characterized in structure, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that MZFO@ZMO heterojunctions with the core-shell structure, demonstrates excellent absorption intensity in the visible light region, outperforming that of individual ZnO and Zn0.9Mn0.1O. Especially, the staggered bandgap alignment of Mn0.6Zn0.4Fe2O4 and Zn0.9Mn0.1O greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@50%-ZMO shows the highest photodegradation performance toward methylene blue (MB) under the visible light irradiation, with a 99.7% of photodegradation efficiency of 20 mg L−1 of MB within 90 min, and its reactive kinetic constants is about 7.2, 10.8 and 21.7 times higher than that of Zn0.9Mn0.1O, P25 TiO2 and Mn0.6Zn0.4Fe2O4, respectively. The MB photocatalytic mechanism is investigated in the scavenger and 5,5-dimethylpyrroline-N-oxide (DMPO) spin-trapping electron spin resonance (ESR) experiments, and h+ and *O2− are identified as the major active species for MB degradation. In addition, MZFO@50%-ZMO also exhibits a good reusability and high magnetic separation properties after six successive cycles. This new material indicates the advantages of low costs, simple reuse and great potential in application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.