Abstract
The effect of Zn-doping in CoFe2O4 nanoparticles (NPs) through chemical co-precipitation route was investigated in term of structural, optical, and magnetic properties. Both XRD and FTIR analyses confirm the formation of cubic spinel phase, where the crystallite size changes with Zn content from 46 to 77 nm. The Scherrer method, Williamson-Hall (W-H) analysis, and size-strain plot method (SSPM) were used to study of crystallite sizes. The TEM results were in good agreement with the results of the SSP method. SEM observations reveal agglomeration of fine spherical-like particles. The optical band gap energy determined from diffuse reflectance spectroscopy (DRS) varies increases from 1.17 to 1.3 eV. Magnetization field loops reveal a ferromagnetic behavior with lower hysteresis loop for higher Zn content. The magnetic properties are remarkably influenced with Zn doping; saturation magnetization (Ms) increases then decreases while both coercivity (HC) and remanent magnetization (Mr) decrease continuously, which was associated with preferential site occupancy and the change in particle size.
Highlights
Researchers have been interested in studying materials in their nanoscale dimensions due to their high surface area resulting to enhanced properties in comparison with the bulk materials counterpart [1,2,3,4,5,6]
The Transmission electron microscopy (TEM) results were in good agreement with the results of the SSP method
The magnetic properties are remarkably influenced with Zn doping; saturation magnetization (Ms) increases decreases while both coercivity (HC) and remanent magnetization (Mr) decrease continuously, which was associated with preferential site occupancy and the change in particle size
Summary
Researchers have been interested in studying materials in their nanoscale dimensions due to their high surface area resulting to enhanced properties in comparison with the bulk materials counterpart [1,2,3,4,5,6]. The magnetization properties were found to be altered too, as the saturation magnetization (Ms) and remanent magnetization (Mr), at room temperature, increased from 19 to 8 emu/g for pure ZnFe2O4 prepared by combustion method to 45 and 16 emu/g, respectively, for 50% Mg-doped one. Few reports predicted that oxide nanoparticles tend to undergo nucleation and growth of Fe ions as a result of electron beam annealing [25]. Such Fe nanoclusters are reported to cause large magnetoresistance due a combination of geometric and spin dependent scattering [26].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.