Abstract

Mn-doped Zn3P2-diluted magnetic semiconducting nanoparticles (Zn0.98Mn0.02P2, Zn0.96Mn0.04P2, Zn0.94Mn0.06P2, and Zn0.92Mn0.08P2) were synthesized by a conventional solid-state reaction followed by a subsequent vacuum annealing process. The formation of a tetragonal structure of pure and Mn-doped Zn3P2 was confirmed by X-ray diffraction studies, with no evidence of any further phases. Lattice parameters dicrease from a = b = 8.133 Å, c = 11.459 Å to a = b = 8.041 Å, c = 11.410 Å with increasing dopant concentration. Scanning electron microscpy analysis indicated that all samples that underwent doping exhibited agglomeration in the scanned range of 500 nm. Energy-dispersive X-ray analysis confirmed the presence of Zn, P, and Mn in the samples, and all of the synthesized samples achieved a nearly atomic ratio. In the diffused reflectance spectra, the optical band gap increases from 1.398 to 1.418 eV with increasing dopant concentration. PL has provided evidence indicating that the emission intensity of all doped samples remains constant with increasing dopant content from x = 0.02 to 0.08, with different excitation wavelengths (215 and 290 nm). Vibrating sample magnetometer tests confirmed the presence of ferromagnetic behavior at room temperature, and a positive correlation between saturation magnetization and Mn content, with the magnetic moment increasing from 0.0640 to 0.1181 emu g−1 with an increase in dopant content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.