Abstract
The structural, optical and electrical properties of 60 MeV C5+ ion-irradiated poly(3-methylthiophene) (P3MT) synthesized by the chemical oxidation polymerization method have been studied. The P3MT powder was dissolved in chloroform (CHCl3), and thin films of thickness 2 μm were prepared on glass and Si substrates. The polymerization was confirmed by the FTIR spectrum. Then films were irradiated by 60 MeV C5+ ions at different fluences. FTIR spectra show methyl group evolution after irradiation. The optical band gap decreases slightly after irradiation and the DC conductivity increases by about one order of magnitude after irradiation at the highest fluence. The role of S e has also been discussed when compared with 60 MeV Si5+ ion irradiation of P3MT. The morphological changes are observed using SEM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.