Abstract

Two rhodamine 6G-based mononuclear dysprosium complexes, [Dy(LR)(LA)2](ClO4)3·Et2O·1.5MeOH·0.5H2O (1) and [Dy(LR)(H2O)4(MeCN)](ClO4)3·2H2O·MeCN (2) (LR = salicylaldehyde rhodamine 6G hydrazone, LA = 2-pyridylcarboxaldehyde benzoyl hydrazone), are synthesized, aiming at improving the magnetic behavior by modulating their coordination environment. Both complexes own one exclusive short Dy-Ophenoxy coordination bond as the predominant bond and exhibit single-molecule magnet behavior under zero dc field with the energy barrier (Ueff/kB) of 90 K (1) and 320 K (2) and apparent hysteresis at 1.9 K. The ab initio calculations indicate that the short Dy-Ophenoxy bond determines the direction of magnetic anisotropic axis for 1 and 2. The quantum tunneling of magnetization (QTM) between the ground Kramers doublets (KDs) in 1 cannot be neglected, leading to an experimental Ueff/kB much lower than the calculated energy of the first excited state (318.2 K). For 2, the stronger magnetic anisotropy and negligible QTM between the ground KDs guarantees that the energy barrier is close to the calculated energy of first KDs (320.8 K). On the other hand, the presence of ring-opened xanthene moiety makes complexes 1 and 2 in the solid state emit red light with emission bands of 645 and 658 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.