Abstract

Today organic light emitting diodes are a topic of significant academic and industrial research interest. OLED technology is used in commercially available displays, and efforts have been directed to improve this technology. Design and synthesis of phosphorescent based transition metals are capable of harvesting both singlet and triplet excitons and achieve 100 % internal quantum efficiency is an active area of research. Among all the transition metals, iridium is considered a prime candidate for OLEDs due to its prominent photophysical characteristics. In the present review, we have concentrated on the Iridium based homo and heteroleptic complexes that have dissimilar substitutions on phenylpyridine ligands, different ancillary ligands and the effect of substitution on HOMO/LUMO energies and a brief discussion and correlation on the photophysical, electrochemical and device performances of the different complexes have been reviewed for organic light emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.