Journal of Molecular Biology | VOL. 434
Read

Structural Mechanism of TAF-Iβ Chaperone Function on Linker Histone H1.10

Publication Date Oct 1, 2022

Abstract

Linker histone H1, facilitated by its chaperones, plays an essential role in regulating gene expression by maintaining chromatin's higher-order structure and epigenetic state. However, we know little about the structural mechanism of how the chaperones recognize linker histones and conduct their function. Here, we used biophysical and biochemical methods to investigate the recognition of human linker histone isoform H1.10 by the TAF-Iβ chaperone. Both H1.10 and TAF-Iβ proteins consist of folded cores and disordered tails. We found that H1.10 formed a complex with TAF-Iβ in a 2:2 stoichiometry. Using distance restraints obtained from methyl-TROSY NMR and spin labels, we built a structural model for the core region of the complex. In the model, the TAF-Iβ core interacts with the globular domain of H1.10 mainly through electrostatic interactions. We confirmed the interactions by measuring the effects of mutations on the binding affinity. A comparison of our structural model with the chromatosome structure shows that TAF-Iβ blocks the DNA binding sites of H1.10. Our study provides insights into the structural mechanism whereby TAF-Iβ functions as a chaperone by preventing H1.10 from interacting with DNA directly.

Concepts

Linker Histone H1 Globular Domain Of H1 Linker Histone methyl-TROSY NMR Chromatin's Higher-order Structure Epigenetic State Higher-order Structure Spin Labels Regulating Gene Expression Structural Mechanism

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.