Abstract

Fluorine-doped diamond-like carbon (a-C:F) films with different fluorine content were fabricated on Si wafer by plasma immersion ion implantation and deposition (PIII–D). Film composition and structure were characterized by X-ray photoelectron spectroscopy (XPS) and Raman scattering spectroscopy. Surface morphology and roughness were analyzed by atomic force microscopy (AFM). Hardness and scratch resistance were measured by nano-indentation and nano-scratch, respectively. Water contact angles were measured by sessile drop method. With the increase of the CF4 flux, fluorine content was gradually increased to the film. Raman spectra indicates that these films have a diamond-like structure. The addition of fluorine to diamond-like carbon films had a critical influence on the film properties. The film surface becomes more smoother due to the etching behavior of F+. Hardness was significantly reduced, while the scratch resistance results show that these films have a fairly good adhesion to the substrate. Evident improvements of the hydrophobicity have been made to these films, with contact angles of double-stilled water approaching that of polytetrafluoroethylene (PTFE). Our study suggests that broad application regions of the fluorine-doped amorphous carbon films with diamond-like structure, synthesized by PIII–D, can be extended by combining the non-wetting properties and mechanical properties which are far superior to those of PTFE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.