Abstract

This paper addresses the modeling of strains generated by magnetostrictive transducers in response to applied magnetic fields. The measured strains depend on both the rotation of moments within the material in response to the field and the elastic properties of the material. The magnetic behavior is characterized by considering the Jiles-Atherton mean field theory for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. Elastic properties must be incorporated to account for the dynamics of the material as it vibrates. This is modeled by force balancing, which yields a wave equation with magnetostrictive inputs. The validity of the resulting transducer model is illustrated by comparison with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.