Abstract

Integrated interpretations of potential-field and GLIMPCE and industry seismic reflection data in eastern Lake Superior reveal the structural and stratigraphic complexity of the Midcontinent Rift in this region. Projection of the Keweenaw fault into southeastern Lake Superior suggested by early potential-field studies is confirmed by seismic reflection data. Analysis of seismic data in conjunction with aeromagnetic anomalies and regional gravity data also reveals a continuous section of basalt in the footwall of the Keweenaw fault. The lateral dimensions of this section vary along the strike of the rift from the center of the basin towards the southern flank. Spatially extensive anticlinal and synclinal features, reverse faults and related drag folds imaged by the reflection and enhanced potential-field data attest to the influence of a late-stage compressional event in this region. East-northeast trending gradients and displacements associated with observed potential-field anomalies and fault traces mapped at the surface also indicate a degree of accommodation perpendicular to the strike of the rift. These trends parallel the prevalent tectonic grain in the adjacent Archean basement rocks, perhaps suggesting that structures within the rift were in part controlled by preexisting crustal features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.