Abstract
Mouse L-threonine dehydrogenase (mTDH), which belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and mediates threonine catabolism, plays pivotal roles in both powerful biosynthesis and signaling in mouse stem cells and has a regulatory residue Arg180. Here we determined three crystal structures of mTDH: wild-type (WT) in the apo form; in complex with NAD(+) and a substrate analog, glycerol, or with only NAD(+); as well as the R180K variant with NAD(+). This is the first description of a structure for mammalian SDR-type TDH. Structural comparison revealed the structural basis for SDR-type TDH catalysis remains strictly conserved in bacteria and mammals. Kinetic enzyme assays, and isothermal titration calorimetry (ITC) measurements indicated the R180K mutation has little effect on NAD(+) binding affinity, whereas affects the substrate's affinity for the enzyme. The crystal structure of R180K with NAD(+), biochemical and spectroscopic studies suggested that the R180K mutant should bind NAD(+) in a similar way and have a similar folding to the WT. However, the R180K variant may have difficulty adopting the closed form due to reduced interaction of residue 180 with a loop which connects a key position for mTDH switching between the closed and open forms in mTDH catalysis, and thereby exhibited a significantly decreased kcat/Km value toward the substrate, L-Thr. In sum, our results suggest that activity of GalE-like TDH can be regulated by remote interaction, such as hydrogen bonding and hydrophobic interaction around the Arg180 of mTDH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.