Abstract

Hydrolysis of arabinoxylan (AX) by glycoside hydrolase family 10 (GH10) xylanases produces xylo- and arabinoxylo-oligosaccharides ((A)XOS) which have shown prebiotic effects. The thermostable GH10 xylanase RmXyn10A has shown great potential to produce (A)XOS. In this study, the structure of RmXyn10A was investigated, the catalytic module by homology modelling and site-directed mutagenesis and the arrangement of its five domains by small-angle X-ray scattering (SAXS). Substrate specificity was explored in silico by manual docking and molecular dynamic simulations. It has been shown in the literature that the glycone subsites of GH10 xylanases are well conserved and our results suggest that RmXyn10A is no exception. The aglycone subsites are less investigated, and the modelled structure of RmXyn10A suggests that loop β6α6 in the aglycone part of the active site contains a non-conserved α-helix, which blocks the otherwise conserved space of subsite +2. This structural feature has only been observed for one other GH10 xylanase. In RmXyn10A, docking revealed two alternative binding regions, one on either side of the α-helix. However, only one was able to accommodate arabinose-substitutions and the mutation study suggests that the same region is responsible for binding XOS. Several non-conserved structural features are most likely to be responsible for providing affinity for arabinose-substitutions in subsites +1 and +2. The SAXS rigid model of the modular arrangement of RmXyn10A displays the catalytic module close to the cell-anchoring domain while the carbohydrate binding modules are further away, likely explaining the observed lack of contribution of the CBMs to activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.