Abstract

In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Å and 2.0 Å in Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.