Abstract
The properties of InSb/InAs quantum dots (QDs) have been investigated by transmission electron microscopy (TEM). Specific features of diffraction contrast were discovered in plan-view TEM images of big (9–10 nm in height and 38–50 nm in diameter) InSb QDs. To understand the origin of such distortions, a model of an InSb QD on InAs substrate containing a partial Frank dislocation (FD) was developed and used for calculations of the displacement field and the subsequent diffraction image simulation of an InSb QD for the first time. The shape of the QD was established to have an insignificant influence on the magnitude of radial displacements. The insertion of a misfit defect (a partial Frank dislocation) into the QD reduces the strain at the edges of the QD almost by 30%. The comparison of experimental and simulated data allowed us to explain the observed features of the moiré pattern in the image of a big InSb QD by the presence of a misfit defect at the QD-substrate interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: St. Petersburg Polytechnical University Journal: Physics and Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.