Abstract
Fe-10Cr-5Y2O3 powders were mechanically alloyed using a high energy horizontal ball-mill apparatus, and the effect of heat treatment on the behavior of nano-sized oxide particles formed in the mechanically alloyed Fe-10Cr-5Y2O3 powders was investigated. Elongated Cr-rich and Y-rich oxides were observed in the mechanically alloyed powders. During the heating of these powders above 700 °C, the elongated Cr-rich oxides were dramatically changed to a near- spherical morphology. Cubic-Y2O3, monoclinic-Y2O3 and YFeO3 phases were also found after heat treatment at 1150 °C for 1h, indicating that the Y-rich oxide phase was transformed to the cubic-Y2O3, monoclinic-Y2O3 and YFeO3 ones. It is thus concluded that both a morphological change of Cr-rich oxide and a phase transformation of Y-rich oxide during the heating of mechanically alloyed powders could be mainly attributed to extremely high energy, accumulated by the mechanical alloying process.
Highlights
Oxide dispersion strengthened (ODS) steels have an excellent irradiation resistance and superior high-temperature mechanical properties [1,2]
In order to enhance the performance of ODS steels, the oxide particles should be a few nanometers in size and need to be homogeneously distributed in the matrix
The mechanically alloyed Fe-10Cr-5Y2 O3 powders showed the typical features of severe plastic deformation, which was ascribed to the repeated fracture and cold-welding of the powder mixture
Summary
Oxide dispersion strengthened (ODS) steels have an excellent irradiation resistance and superior high-temperature mechanical properties [1,2]. The improved irradiation resistance and mechanical properties of ODS steels come from the presence of nano-sized oxide precipitates in the matrix [3]. A 10 wt.% Cr ODS ferritic/martensitic steel with some minor elements has been newly developed for the in-core structural components of SFR, which has very attractive microstructures to achieve both superior creep and radiation resistances at high temperatures [1,4]. The characteristics of ODS steels are mainly decided by the size, inter-spacing and the crystallographic relationship with the matrix of oxide particles [6]. In order to enhance the performance of ODS steels, the oxide particles should be a few nanometers in size and need to be homogeneously distributed in the matrix
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.