Abstract

The role of sulphuric acid (H2SO4) in fabrication graphene oxide besides as intercalant has not been well addressed. In this work, Raman spectroscopy is used to monitor structural evolution in chemical vapor deposition (CVD) graphene chemically oxidized by dilute H2SO4. From the analysis of Raman spectra of oxidized graphene, we propose that oxidation first initiates at preexisting defects, and vacancy‐like defects are formed. Following is the radial growth of the vacancy, and oxidation pits appear in graphene. This assumption is further confirmed by atomic force microscope measurement. It is also found that with increase of amounts of defects, G peak is blue shift, and this is explained by defect and hole doping effect. Hole doping in graphene is much stronger at hexagon regions near the oxidation pits. This work helps in understanding the role of H2SO4 in fabrication graphene oxide as oxidizer as well as helps in obtaining structure information of graphene oxide. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.