Abstract
We present a theoretical study of structural evolution, electronic properties, and photoelectron spectra of two sulfur atom-doped boron clusters S2Bn0/- (n = 2-13), which reveal that the global minima of the S2Bn0/- (n = 2-13) clusters show an evolution from a linear-chain structure to a planar or quasi-planar structure. Some S-doped boron clusters have the skeleton of corresponding pure boron clusters; however, the addition of two sulfur atoms modified and improved some of the pure boron cluster structures. Boron is electron-deficient and boron clusters do not form linear chains. Here, two sulfur atom doping can adjust the pure boron clusters to a linear-chain structure (S2B20/-, S2B30/-, and S2B4-), a quasi-linear-chain structure (S2B6-), single- and double-chain structures (S2B6 and S2B9-), and double-chain structures (S2B5, and S2B9). In particular, the smallest linear-chain boron clusters S2B20/- are shown with an S atom attached to each end of B2. The S2B2 cluster possesses the largest highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of 5.57 eV and the S2B2- cluster possesses the largest average binding energy Eb of 5.63 eV, which shows the superior chemical stability and relative stability, respectively. Interestingly, two S-atom doping can adjust the quasi-planar pure boron clusters (B7-, B10-, and B120/-) to a perfect planar structure. AdNDP bonding analyses reveal that linear S2B3 and planar SeB11- have π aromaticity and σ antiaromaticity; however, S2B2, planar S2B6, and planar S2B7- clusters have π antiaromaticity and σ aromaticity. Furthermore, AdNDP bonding analyses reveal that planar S2B4, S2B10, and S2B12 clusters are doubly (π and σ) aromatic, whereas S2B5-, S2B8, S2B9-, and S2B13- clusters are doubly (π and σ) antiaromatic. The electron localization function (ELF) analysis shows that S2Bn0/- (n = 2-13) clusters have different electron delocalization characteristics, and the spin density analysis shows that the open-shell clusters have different characteristics of electron spin distribution. The calculated photoelectron spectra indicate that S2Bn- (n = 2-13) have different characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these doped boron clusters. Our work enriches the new database of geometrical structures of doped boron clusters, provides new examples of aromaticity for doped boron clusters, and is promising to offer new ideas for nanomaterials and nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.