Abstract

Hydrogen undergoes dissociative chemisorption on small titanium clusters. How the electronic structure of the cluster changes as a function of the number of adsorbed hydrogen atoms is an important issue in nanocatalysis and hydrogen storage. In this paper, a detailed theoretical investigation of the structural, energetic, and electronic properties of the icosahedral Ti13 cluster is presented as a function of the number of adsorbed hydrogen atoms. The results show that hydrogen loaded Ti13H20 and Ti13H30 clusters are exceptionally stable and are characterized by hydrogen multicenter bonds. In Ti13H20, the dissociated hydrogen atoms are bound to each of the 20 triangular faces of Ti13, while in Ti13H30, they are bound to the 30 Ti-Ti edges of Ti13. Consequently, the chemisorption and desorption energies of the Ti13H20 (1.93 eV, 3.10 eV) are higher than that of Ti13H30 (1.13 eV, 1.95 eV). While increased hydrogen adsorption leads to an elongation of the Ti-Ti bonds, there is a concomitant increase in the electrostatic interaction between the dissociated hydrogen atoms and the Ti13 cluster. This enhanced interaction results from the participation of the subsurface titanium atom at higher hydrogen concentrations. Illustrative results of hydrogen saturation on the larger icosahedral Ti55 cluster are also discussed. The importance of these results on hydrogen saturated titanium clusters in elucidating the mechanism of hydrogen adsorption and desorption in titanium doped complex metal hydrides is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.