Abstract

To evade innate immunity, many viruses express interferon-antagonists that target STATs, critical mediators of immune signalling. Virus-STAT interfaces may provide new therapeutic targets but progress is hindered by a lack of direct structural data, owing to poor tractability of antagonists/full-length STATs for structural/biophysical approaches. By applying cross-saturation transfer NMR, we report the first direct structural analysis of binding of full-length STAT1 to an interferon-antagonist of a human pathogenic virus, the first such study of the virus-host interface. Analysis using mutation of the interface, biophysical characterization, immune signalling/protein-protein interaction assays including PCA, reverse genetics and animal infection demonstrated the significance of this interface in immune signaling suppression, and in disease caused by a pathogenic field-strain lyssavirus. Importantly, NMR/mutagenesis also revealed that the interface comprises multiple surfaces/domains in both the viral and cellular partners, indicating that antagonism involves extensive interactions consistent with a multifaceted inhibitory mechanism, distinct from ‘simple’ mechanisms such as tethering. Furthermore, by elucidating the spatial relationship of interactions critical to immune evasion and replication, the data provide insight into how ostensibly simple viruses can regulate these central functions via a single multifunctional protein. These data provide novel insights into fundamental viral biology, and potential exploitation of these mechanisms as new targets for antivirals and vaccine development. The study also demonstrates the power of biophysical/NMR approaches to elucidate the atomic interface of full-length STATs with regulatory proteins, providing a framework for studies to reveal immune evasion mechanisms of other pathogens in their full complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.