Abstract
In this paper we report the structural, electrical, and optical properties of epitaxial Zn1−xGaxO films (x=0–0.05) grown on single crystal sapphire (0001) substrate by pulsed laser deposition technique. Structural and elemental analysis was performed using high-resolution x-ray diffraction (θ-2θ and Φ scan) and energy dispersive x-ray spectroscopy. Temperature dependent electrical resistivity and thermoelectric power measurements were performed over the temperature range of 77–300K and 296–373K, respectively. Hall effect and optical transmission measurements were preformed at room temperature. All these studies showed that the structural, electrical as well as the optical characteristics of Zn1−xGaxO films depend very sensitively on the Ga contents. As the Ga doping concentration is increased, initially an increase in carrier concentration and optical band gap is observed (until x=0.04), which is followed by a decrease at higher concentrations. These features were attributed to the combined effect of band filling (Burstein-Moss effect), electronic correlation, and epitaxial strain present in the system. Above parameters also affected the electrical properties of the films quite significantly. Zn1−xGaxO films with 1% of Ga doping (x=0.01) showed metal-like electrical resistivity. However, for higher doping levels, enhanced scattering potential, arising from randomly distributed impurity atoms, resulted in the Anderson localization of electronic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.