Abstract

This paper concerns the development and validation of Finite Element Methods (FEM) to simulate the dynamic response of a dowelled-joist timber floor. This is a solid floor comprised of timber joists connected using timber dowels with individual assemblies connected using inclined metal screws. The focus is on the structural dynamics in the low-frequency range up to 200Hz which is the relevant range for impact sound insulation and vibration serviceability. Dowel connections between the joists that formed each assembly were modelled using either rigid or spring connectors in the FEM models. The validation against experimental modal analysis showed that both approaches were valid in terms of the eigenfrequencies, Modal Assurance Criterion (MAC) and the spatial-average velocity with point excitation. Whilst the FEM model with spring connectors had a higher number of correlated modes in the MAC analysis, this required removal of many spurious modes before predicting the response. The validated models were used to demonstrate the potential in predicting assessment parameters for vibration serviceability that are contained in EN 1995-1-1 (Eurocode 5). This predictive approach to the evaluation of vibration serviceability has the advantage in that it can be used for non-standard timber floors with non-standard boundary conditions or floor plans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.