Abstract

Spin effect of the small diameter shaped charge results in the centrifugal stress during the jet stretching process. Consequently, the jet scatters, which deceases the jet penetration capability. In the present study, a multi-section method was proposed to design the spin-compensation liner. The spin-compensation rate (SCR) of the liner was defined as the specific angular velocity that a fluted liner can offset. Based on the plain stress theory, SPH numerical method was applied to study the converging process of the 2D fluted structure. The spin-compensation mechanism of the fluted structure was illustrated. Then, nine cross sections were chosen along the liner axis equidistantly. On each of the section, a 2D fluted structure was designed to offset a given initial angular velocity. After, the optimized fluted structures were integrated into a 3D fluted liner. Jet appearances of the normal liner and the fluted liners under different initial angular velocities were compared, which verifies the practicality of the multi-sectional method. The multi-section optimization method provides a new efficient method of designing the shaped charge liner for a specific usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.