Abstract

This paper presents a structural damage identification approach based on the time domain impulse response functions, which are extracted from the measured dynamic responses with the input available. The theoretical sensitivity of the impulse response function with respect to the system stiffness parameters considering the damping model is derived. The first-order sensitivity based model updating technique is performed for the iterative model updating. The initial structural finite element model and acceleration measurements from the damaged structure are required. Local damage is identified as a reduction in the elemental stiffness factors. The impulse response function sensitivity based optimal sensor placement strategy is employed to investigate the best sensor locations for identification. Numerical studies on a beam model are conducted to validate the proposed approach for the extraction of time domain impulse response functions and subsequent damage identification. The simulated damage can be identified effectively and accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.