Abstract

The sensitivity of wavelet packet transform (WPT) component energy with respect to local change in the system parameters is derived analytically based on the dynamic response sensitivity. A sensitivity-based method is then used for damage detection of structures. The WPT component energy sensitivity is classified into two types and their inclusion in the identification equation is discussed. The identification equation is solved using measured responses from two states of the structure with regularization in the solution. Both acceleration and strain responses have been used separately or in combination in the simulation study, and the sensitivity of acceleration with respect to local change of structural parameter is shown both analytically and numerically to be much better than that from strains. The proposed method is shown both analytically and numerically to be not sensitive to measurement noise. The method can differentiate damages at close proximity to each other with good resolution using a very short duration of measured data from only two sensors. An experimental result from a steel beam also confirms the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.