Abstract

We explore structural correlations of strongly asymmetric mixtures of binary charged colloids within the primitive model of electrolytes considering large charge and size ratios of 10 and higher. Using computer simulations with explicit microions, we obtain the partial pair correlation functions between the like-charged colloidal macroions. Interestingly the big-small correlation peak amplitude is smaller than that of the big-big and small-small macroion correlation peaks, which is unfamiliar for additive repulsive interactions. Extracting optimal effective microion-averaged pair interactions between the macroions, we find that on top of non-additive Yukawa-like repulsions an additional shifted Gaussian attractive potential between the small macroions is needed to accurately reproduce their correct pair correlations. For small Coulomb couplings, the behavior is reproduced in a coarse-grained theory with microion-averaged effective interactions between the macroions. However, the accuracy of the theory deteriorates with increasing Coulomb coupling. We emphasize the relevance of entropic interactions exerted by the microions on the macroions. Our results are experimentally verifiable in binary mixtures of micron-sized colloids and like-charge nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call