Abstract

The Zintl phase Ca2CdSb2 was found to be dimorphic. Besides the orthorhombic Ca2CdSb2 (-o), here we report on the synthesis, the structural characterization, and the thermoelectric transport properties of its monoclinic form, Ca2CdSb2 (-m), and its Lu-doped variant Ca2-xLuxCdSb2 (x ≈ 0.02). The monoclinic structure exhibits complex structural characteristics and constitutes a new structure type with the non-centrosymmetric space group Cm (Z = 30). The electrical resistivity ρ(T) measured on single crystals of both phases portrays a transition from a semiconductor to a degenerate p-type semiconductor upon doping with Lu and with an attendant change in the Hall carrier concentration nH from 7.15 × 1018 to 2.30 × 1019 cm-3 at 300 K. The Seebeck coefficient S(T) of both phases are comparable and indicate a hole-dominated carrier transport mechanism with magnitudes of 133 and 116 μV/K at 600 K for Ca2CdSb2 (-m) and Ca2-xLuxCdSb2, respectively. The convoluted atomic bonding with an attendant large unit cell volume of ∼4365 Å3 drives a putative low thermal conductivity in these materials resulting in a power factor PF of 1.63 μW/cm K2 and an estimated thermoelectric figure of merit zT of ∼0.5 for Ca2-xLuxCdSb2 at 600 K. Differential scanning calorimetry results reveal the stability of these phases up to about 960 K, making them candidates for moderate temperature thermoelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.