Abstract
The logics RŁ, RP, and RG have been obtained by expanding Łukasiewicz logic Ł, product logic P, and Gödel–Dummett logic G with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in Ł, P, and G. Namely, RŁ is hereditarily structurally complete. RP is algebraized by the variety of rational product algebras that we show to be Q-universal. We provide a base of admissible rules in RP, show their decidability, and characterize passive structural completeness for extensions of RP. Furthermore, structural completeness, hereditary structural completeness, and active structural completeness coincide for extensions of RP, and this is also the case for extensions of RG, where in turn passive structural completeness is characterized by the equivalent algebraic semantics having the joint embedding property. For nontrivial axiomatic extensions of RG, we provide a base of admissible rules. We leave the problem open whether the variety of rational Gödel algebras is Q-universal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.