Abstract

Ulvan is a sulfated heteropolysaccharide present in the cell wall of Ulva species with unique structural properties and technological potential. Here we characterized by FTIR and NMR analysis the structure of ulvan from Ulva fasciata collected in natural environment (SEA) and after in vitro biomass cultivation in nutrient enriched water (CULT). FTIR spectrum of CULT ulvan presented stronger signals of sulfate groups than SEA. 1H and 13C NMR showed that both ulvan are composed mainly of ulvanobiuronic acid 3-sulfate type A and type B. SEA ulvan presented signals characteristics of xylose, suggesting the presence of ulvanobiose in its structure, while CULT presented most signals of type A disaccharide. The cultivation of Ulva could be an alternative to suffice the emerging demand for ulvan meeting requirements of quality and quantity.

Highlights

  • Marine ecosystems represent a rich source of macromolecules with unique physico-chemical characteristics [1]

  • We characterized by FTIR and NMR analysis the structure of ulvan from Ulva fasciata collected in natural environment (SEA) and after in vitro biomass cultivation in nutrient enriched water (CULT)

  • Iduronic acid, which has never been identified in algal polysaccharides [5] [23] is required in the synthesis of heparin analogs being used against respiratory syncytial virus infection and antithrombotic activities [24] [25]

Read more

Summary

Introduction

Marine ecosystems represent a rich source of macromolecules with unique physico-chemical characteristics [1] In this sense, polysaccharides extracted from marine macroalgae are receiving increasing attention due to their diversity, biocompatibility and structural features not found in any other organism [2]. Iduronic acid, which has never been identified in algal polysaccharides [5] [23] is required in the synthesis of heparin analogs being used against respiratory syncytial virus infection and antithrombotic activities [24] [25] This substance is obtained through several steps that could be avoided using ulvan [5] [25]. To determine the potential of cultivated Ulva for ulvan production in this work we characterized (FTIR and NMR) the ulvan extracts from Ulva fasciata Delile (Chlorophyta) after in vitro biomass cultivation in nutrient enriched water and compared it against ulvan from biomass collected in an oligotrophic natural environment, to enhance potential structural differences

Algal Material
Ulva Cultivation
Ulvan Extraction
Nuclear Magnetic Resonance Spectroscopy
Results and Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.