Abstract

Rhizobium are Gram-negative bacteria that survive intracellularly, within host membrane-derived plant cell compartments called symbiosomes. Within the symbiosomes the bacteria differentiate to bacteroids, the active form that carries out nitrogen fixation. The progression from free-living bacteria to bacteroid is characterized by physiological and morphological changes at the bacterial surface, a phase shift with an altered array of cell surface glycoconjugates. Lipopolysaccharides undergo structural changes upon differentiation from the free living to the bacteroid (intracellular) form. The array of carbohydrate structures carried on lipopolysaccharides confer resistance to plant defense mechanisms and may serve as signals that trigger the plant to allow the infection to proceed. We have determined the structure of the major O-polysaccharide (OPS) isolated from free living Rhizobium leguminosarum 3841, a symbiont of Pisum sativum, using chemical methods, mass spectrometry, and NMR spectroscopy analysis. The OPS is composed of several unusual glycosyl residues, including 6-deoxy-3-O-methyl-d-talose and 2-acetamido-2deoxy-l-quinovosamine. In addition, a new glycosyl residue, 3-acetimidoylamino-3-deoxy-d-gluco-hexuronic acid was identified and characterized, a novel hexosaminuronic acid that does not have an amino group at the 2-position. The OPS is composed of three to four tetrasaccharide repeating units of -->4)-beta-dGlcp3NAmA-(1-->4)-[2-O-Ac-3-O-Me-alpha-d-6dTalp-(1-->3)]-alpha-l-Fucp-(1-->3)-alpha-l-QuipNAc-(1-->. The unique 3-amino hexuronate residue, rhizoaminuronic acid, is an attractive candidate for selective inhibition of OPS synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.