Abstract

Microscopic structures of monodispersed rhodium dicarbonyl species chemisorbed on a ceramic metal-oxide support (?-alumina) have been obtained by density functional theory (DFT) calculations with periodic boundary conditions applied. Several minimum energy structures of species were obtained and their relative energies indicate that, in the most energetically stable geometry, the rhodium atom is coordinated in a square-planar environment and forms a four-membered Rh–O–Al–O ring, with one Al atom octahedrally coordinated. Another docking geometry, close lying in energy, also has a square-planar coordination for the rhodium atom and involves a six-membered Rh–O–Al–O–Al–O ring with one Al octahedrally coordinated and one Al tetrahedrally coordinated. Computed bond lengths were found to be in reasonable agreement with experimental bond lengths as determined by EXAFS spectroscopy. Theoretical Rh K-edge XANES spectra suggest that the pre-edge region probes electronic states localized on the RhI(CO)2 unit, while postedge features probe the electronic states arising from the RhI(CO)2 interaction with the support, which partly depends on the docking geometry of the RhI(CO)2 units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.