Abstract

Amorphous carbon nitride thin films (a‐C:N) were deposited from a carbon target, at room temperature onto silicon substrates, by reactive RF sputtering in a gas mixture of argon and nitrogen. The structural properties of these films have been studied by Raman, infrared (IR), and X‐ray reflectometry spectroscopies. Both the IR and Raman spectra of the a‐C:N films reveal the presence of C–C, C˭C, C˭N, and C≡N bonding types. The Raman spectra analysis shows, an increase of the C≡N triple bonds content when the concentration of nitrogen C(N2) in the gas mixture is increased. The Raman intensities ratio between the disorder (D) and graphitic (G) bands increases with C(N2) suggesting an increased disorder with the incorporation of nitrogen in the carbon matrix. The effect of C(N2) on the density of a‐C:N films was also investigated by X‐ray reflectometry measurement. The increase of the nitrogen concentration C(N2) was found to have a significant effect on the density of the films: as C(N2) increases from 0 to 100%, the density of the a‐C:N films decreases slightly from 1.81 to 1.62 g/cm3. The low values of density of the a‐C:N films were related (i) to the absence of C–N single bonds, (ii) to the increase of disorder introduced by the incorporation of nitrogen in the carbon matrix, and (iii) to the presence of the bands around 2350 cm−1 and 3400 cm−1 associated with the C–O bond stretching modes and the O–H vibration, respectively, suggesting a high atmospheric contamination by oxygen and water. The presence of these bands suggests the porous character of the studied samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.